CCRseqk.Rd
CCRseqk
runs regressions with potentially more covariates than observations with
k
clusters. See c_chmod()
for the list of models supported.
CCRseqk(Y, X, k, nC = 1, kap = 0.1, modclass = "lm", tol = 1e-06, reltol = TRUE, rndcov = NULL, report = NULL, ...)
Y | vector of dependent variable Y |
---|---|
X | design matrix (without intercept) |
k | number of clusters |
nC | first |
kap | maximum number of parameters to estimate in each active sequential step, as a fraction of the less of total number of observations n or number of covariates p. i.e. \(min(n,p)\) |
modclass | a string denoting the desired the class of model. See c_chmod for details. |
tol | level of tolerance for convergence; default |
reltol | a logical for relative tolerance instead of level. Defaults at TRUE |
rndcov | seed for randomising assignment of covariates to partitions; default |
report | number of iterations after which to report progress; default |
... | additional arguments to be passed to the model |
a list of objects
mobj low dimensional model object of class lm, glm, or rq (depending on modclass
)
clus cluster assignments of covariates
iter number of iterations
dev decrease in the function value at convergence
set.seed(14) #Generate data N = 1000; (bets = rep(-2:2,4)/2); p = length(bets); X = matrix(rnorm(N*p),N,p)#> [1] -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 #> [16] -1.0 -0.5 0.0 0.5 1.0Y = cbind(1,X)%*%matrix(c(0.5,bets),ncol = 1); nC=1 zg=CCRseqk(Y,X,k=5,nC=nC,kap=0.1,modclass="lm",tol=1e-6,reltol=TRUE,rndcov=NULL,report=8) (del=zg$mobj$coefficients) # delta#> (Intercept) X1 X2 X3 X4 #> 5.000000e-01 -1.000000e+00 -5.000000e-01 1.944761e-16 5.000000e-01 #> X5 #> 1.000000e+00#> (Intercept) X1 X2 X3 X4 #> 5.000000e-01 -1.000000e+00 -5.000000e-01 1.944761e-16 5.000000e-01 #> X5 X1 X2 X3 X4 #> 1.000000e+00 -1.000000e+00 -5.000000e-01 1.944761e-16 5.000000e-01 #> X5 X1 X2 X3 X4 #> 1.000000e+00 -1.000000e+00 -5.000000e-01 1.944761e-16 5.000000e-01 #> X5 X1 X2 X3 X4 #> 1.000000e+00 -1.000000e+00 -5.000000e-01 1.944761e-16 5.000000e-01 #> X5 #> 1.000000e+00