CCRls.RdCCRls runs regressions with potentially more covariates than observations.
See c_chmod() for the list of models supported.
CCRls(Y, X, kap = 0.1, modclass = "lm", tol = 1e-06, reltol = TRUE, rndcov = NULL, report = NULL, ...)
| Y | vector of dependent variable Y |
|---|---|
| X | design matrix (without intercept) |
| kap | maximum number of parameters to estimate in each active sequential step, as a fraction of the less of total number of observations n or number of covariates p. i.e. \(min(n,p)\) |
| modclass | a string denoting the desired the class of model. See c_chmod for details. |
| tol | level of tolerance for convergence; default |
| reltol | a logical for relative tolerance instead of level. Defaults at TRUE |
| rndcov | seed for randomising assignment of covariates to partitions; default |
| report | number of iterations after which to report progress; default |
| ... | additional arguments to be passed to the model |
betas parameter estimates (intercept first),
iter number of iterations,
dev increment in the objective function value at convergence
fval objective function value at convergence
set.seed(14) #Generate data N = 1000; (bets = rep(-2:2,4)); p = length(bets); X = matrix(rnorm(N*p),N,p)#> [1] -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2Y = cbind(1,X)%*%matrix(c(0.5,bets),ncol = 1) CCRls(Y,X,kap=0.1,modclass="lm",tol=1e-6,reltol=TRUE,rndcov=NULL,report=8)#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#> $betas #> (Intercept) #> 5.000000e-01 -2.000000e+00 -1.000000e+00 9.545726e-15 1.000000e+00 #> #> 2.000000e+00 -2.000000e+00 -1.000000e+00 -2.844662e-15 1.000000e+00 #> #> 2.000000e+00 -2.000000e+00 -1.000000e+00 -5.262962e-16 1.000000e+00 #> #> 2.000000e+00 -2.000000e+00 -1.000000e+00 -1.949927e-15 1.000000e+00 #> #> 2.000000e+00 #> #> $iter #> [1] 139 #> #> $dev #> 'log Lik.' -0.00236367 (df=5) #> #> $fval #> 'log Lik.' -29814.17 (df=5) #>